Conceptual Design of a Lunar Shuttle Transport Vehicle

Preparing to load PDF file. please wait...

0 of 0
100%
Conceptual Design of a Lunar Shuttle Transport Vehicle

Transcript Of Conceptual Design of a Lunar Shuttle Transport Vehicle

University of Tennessee, Knoxville
TRACE: Tennessee Research and Creative Exchange

Masters Theses

Graduate School

5-2004
Conceptual Design of a Lunar Shuttle Transport Vehicle
Matthew David Finney University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerospace Engineering Commons
Recommended Citation Finney, Matthew David, "Conceptual Design of a Lunar Shuttle Transport Vehicle. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/2195
This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]

To the Graduate Council:
I am submitting herewith a thesis written by Matthew David Finney entitled "Conceptual Design of a Lunar Shuttle Transport Vehicle." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Aviation Systems.
Dr. Ralph Kimberlin, Major Professor
We have read this thesis and recommend its acceptance:
Dr. U. Peter Solies, Dr. Alfonso Pujol
Accepted for the Council: Carolyn R. Hodges
Vice Provost and Dean of the Graduate School
(Original signatures are on file with official student records.)

To the Graduate Council: I am submitting herewith a thesis written by Matthew David Finney entitled “Conceptual Design of a Lunar Shuttle Transport Vehicle.” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Aviation Systems.
Dr. Ralph Kimberlin Major Professor
We have read this thesis and recommend its acceptance:
Dr. U. Peter Solies Dr. Alfonso Pujol
Accepted for the Council: Anne Mayhew Vice Provost and Dean of Graduate Studies
(Original signatures are on file with official student records.)

CONCEPTUAL DESIGN OF A LUNAR SHUTTLE TRANSPORT VEHICLE
A Thesis Presented for the Master of Science
Degree The University of Tennessee, Knoxville
Matthew David Finney May 2004

DEDICATION This thesis is dedicated to my wife, Katherine C. Finney, whose support and friendship
has been instrumental in my happiness over the last ten years.
ii

ABSTRACT In 1961 the former Soviet Union successfully launched the first human into space marking the beginning of the “Space Race” with the United States. Forty years later, the United States and Russia are working together in support of the International Space Station (ISS). The US Space Shuttle fleet and Russian Soyuz capsule and rockets are being used to replenish the ISS. In light of the latest shuttle accident and aging systems, NASA has been pursing alternatives to replace the shuttle fleet. This study is a conceptual design of a spacecraft designed to meet the following requirements: 1. Transport a crew of eight from Kennedy Space Center in Florida to and from the International Space Station recovering at the Edwards Air Force Base complex in southern California, 2. Transport a crew of eight from the Kennedy Space Center to a future lunar base, and 3. Refuel at the future lunar base using propellant sources mined from moon, launch and return to earth. The spacecraft system, Lunar Shuttle Transport (LST), was designed by tailoring the aircraft design methods presented in Raymer’s, “Aircraft Design: A Conceptual Approach” (1999) to spacecraft design. A design method outline was developed to establish a roadmap for the vehicle design. This study found that the desired configuration for the vehicle would be very similar in shape to the proposed lifting body designs of NASA’s Assured Crew Return Vehicle and Orbital Space Plane. Unlike NASA’s cancelled X-33 demonstration program, the LST system would not be a single stage to orbit design but rather would launch using a rocket system with multiple stages. The Lunar Shuttle Transport (LST)
iii

would use aerodynamic braking to decelerate during reentry into earth’s atmosphere and would rely on a parachute system and rocket engines for the final landing on skids.
For the lunar mission, the LST would use an additional stage for the translunar orbit insertion. The LST would rely on its main engines both for insertion into the low lunar orbit and the eventual landing on the moon. The launch from the moon would require that the LST be refueled by a source on the moon. The lunar launch and return trip to earth would be accomplished using the LST main engines.
iv

TABLE OF CONTENTS
1. MISSION REQUIREMENTS ........................................................................................ 1 1.1 History....................................................................................................................... 1 1.2 General Mission Profiles........................................................................................... 1 1.3 Specific Requirements .............................................................................................. 2
2. DESIGN METHOD........................................................................................................ 5 3. DESIGN ASSUMPTIONS ............................................................................................. 6 4. DESCRIPTION OF DESIGN......................................................................................... 7 5. PROPULSION SYSTEMS............................................................................................. 9
5.1 LST Main Engines .................................................................................................... 9 5.2 LST Attitude Manuevering System .......................................................................... 9 5.3 Space Station Profile Propulsion Configuration ..................................................... 10 5.4 Lunar Profile Propulsion Configuration ................................................................. 10 5.5 Lunar Return Profile Propulsion Configuration ..................................................... 11 6. EXTERNAL LAYOUT ................................................................................................ 12 6.1 Flight Control Systems ........................................................................................... 12 6.2 Parachute System .................................................................................................... 13 6.3 Docking System ...................................................................................................... 13 6.4 Thermal Protection.................................................................................................. 13 6.5 Landing Skids ......................................................................................................... 14 7. INTERNAL LAYOUT ................................................................................................. 16 7.1 Crew Positioning..................................................................................................... 16 7.2 CREW Controls/Interface....................................................................................... 16 7.3 Payload Arrangement.............................................................................................. 16 7.4 Propellant Arrangement .......................................................................................... 17 8. SUMMARY OF APPENDICES................................................................................... 19
BIBLIOGRAPHY............................................................................................................. 20 APPENDICES .................................................................................................................. 23 APPENDIX A: VEHICLE DRAWINGS ......................................................................... 24 APPENDIX B: VEHICLE PARAMETERS .................................................................... 36 APPENDIX C: DESIGN METHOD OUTLINE.............................................................. 38 APPENDIX D: DESIGN SEQUENCE AND DECISIONS............................................. 41 APPENDIX E: PERFORMANCE CALCULATIONS .................................................... 64 APPENDIX F: REFERENCE DATA .............................................................................. 88 APPENDIX G: DEFINITIONS AND VEHICLE DESCRIPTIONS............................... 94 VITA ................................................................................................................................. 97
v

LIST OF TABLES
Table 1: General LST Parameters....................................................................................... 7 Table B-1: LST Vehicle Parameters ................................................................................. 37 Table D-1: Space Station Profile Mission Duration Estimates......................................... 43 Table D-2: Lunar Mission Duration Estimates................................................................. 43 Table D-3: Lunar Return Mission Duration Estimates ..................................................... 44 Table D-4: Examples of Space Launch Vehicles ............................................................. 45 Table D-5: LST Mass Estimate Iterations ........................................................................ 46 Table D-6: Historical Examples of Space Craft Dimensions ........................................... 46 Table D-7: LST Dimension Estimate Iterations ............................................................... 47 Table D-8: Space Shuttle Staging ..................................................................................... 48 Table D-9: LST Space Station Profile Staging ................................................................. 48 Table D-10: Space Station Profile ∆V Budget ................................................................. 49 Table D-11: ∆V Loss Comparisons for Space Shuttle, Titan IV, and LST ...................... 49 Table D-12: Space Station Profile Propellant Budget ...................................................... 49 Table D-13: Saturn V Staging........................................................................................... 50 Table D-14: LST Lunar Profile Staging ........................................................................... 51 Table D-15: Lunar Profile ∆V Budget.............................................................................. 52 Table D-16: Lunar Profile Propellant Budget................................................................... 52 Table D-17: Lunar Return Profile Propellant Budget....................................................... 52 Table D-18: Lunar Profile Thrust Requirement................................................................ 53 Table D-19: Attitude Maintenance Propulsion System Propellant Requirements............ 54 Table D-20: Soyuz and LST Parachute Systems .............................................................. 55 Table D-21: US Space Shuttle and LST Airlock Parameters ........................................... 55 Table D-22: Wing Iteration Choices................................................................................. 57 Table D-23: Internal Volume Requirements for Crew ..................................................... 59 Table D-24: LST Main Propellant Internal Volume Requirements................................. 60 Table D-25: LST Vehicle Mass Estimates....................................................................... 63 Table E-1: ∆V Requirements for Lunar Missions ............................................................ 67 Table E-2: Space Station ∆V and Propellant Budget Calculations................................... 71 Table E-3: Lunar ∆V and Propellant Budget Calculations............................................... 72 Table E-4: Lunar Return ∆V and Propellant Budget Calculations ................................... 73 Table E-5: Spreadsheet Sample Calculations ................................................................... 74 Table E-6: Space Station Profile Optimum Staging Calculations .................................... 75 Table E-7: Lunar Profile Optimum Staging Calculations................................................. 76 Table E-8: Sample Airfoil Characteristics........................................................................ 80 Table E-9: LST Final Mass Estimate (1 of 3)................................................................... 82 Table F-1: Lunar Orbital Parameters ................................................................................ 89 Table F-2: ∆V Requirements for Lunar Missions............................................................. 89 Table F-3: International Space Station Approximate Orbital Parameters ........................ 89 Table F-4: Propellant Densities ........................................................................................ 89 Table F-5: Earth and Lunar Parameters ............................................................................ 90 Table F-6: Apollo Lunar Module Specifications .............................................................. 90
vi

LIST OF FIGURES
Figure 1: Space Station Profile Overview .......................................................................... 3 Figure 2: Lunar Profile Overview....................................................................................... 3 Figure 3: Lunar Return Profile Overview........................................................................... 4 Figure 4: LST Line Drawing............................................................................................... 8 Figure 5: LST Flight Control Surfaces ............................................................................. 12 Figure 6: LST Parachute System ...................................................................................... 15 Figure 7: Lunar Landing Phases ....................................................................................... 15 Figure 8: Earth Landing Phases ........................................................................................ 15 Figure 9: LST Crew Cabin Illustration ............................................................................. 18 Figure 10: LST Internal Propellant Configurations .......................................................... 18 Figure A-1: LST Top View Illustration ............................................................................ 25 Figure A-2: Space Station Profile Launch Configuration Illustration .............................. 26 Figure A-3: Lunar Profile Launch Configuration Illustration .......................................... 27 Figure A-4: LST Detailed Two View Illustration............................................................. 28 Figure A-5: Detailed LST Internal Layout Illustration..................................................... 29 Figure A-6: Detailed Earth Landing Phases ..................................................................... 30 Figure A-7: Detailed Lunar Landing Phases .................................................................... 31 Figure A-8: LST Cabin Crew Side View.......................................................................... 32 Figure A-9: Detailed Space Station Profile Overview...................................................... 33 Figure A-10: Detailed Lunar Profile Overview ................................................................ 34 Figure A-11: Detailed Lunar Return Profile Overview .................................................... 35 Figure D-1: LST Wing Design Sequence ......................................................................... 57 Figure D-2: LST and Space Shuttle Vertical Tail Area to Wing Area Comparison......... 58 Figure E-1: Hohmann Transfer Orbit Illustration............................................................. 66 Figure F-1: Delta V Requirements for Lunar and Mars Missions .................................... 90 Figure F-2: HL-20 PLS..................................................................................................... 91 Figure F-3: Orbital Space Plane Proposal......................................................................... 91 Figure F-4: HL-20 and HL-42 .......................................................................................... 92 Figure F-5: US Space Shuttle Two View Illustration....................................................... 92 Figure F-6: Clementine Lunar Ice Discovery Illustration................................................. 93
vii
ThesisDesignLstMasterMoon