Effect of Target Composition and Sputtering Deposition

Preparing to load PDF file. please wait...

0 of 0
100%
Effect of Target Composition and Sputtering Deposition

Transcript Of Effect of Target Composition and Sputtering Deposition

materials
Article
Effect of Target Composition and Sputtering Deposition Parameters on the Functional Properties of Nitrogenized Ag-Permalloy Flexible Thin Films Deposited on Polymer Substrates
Waheed Khan * ID , Qun Wang * and Xin Jin College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China; [email protected] * Correspondence: [email protected] (W.K.); [email protected] (Q.W.); Tel.: +86-187-1000-0307 (W.K.); +86-139-1190-2164 (Q.W.)
Received: 13 February 2018; Accepted: 15 March 2018; Published: 17 March 2018
Abstract: We report the first results of functional properties of nitrogenized silver-permalloy thin films deposited on polyethylene terephthalic ester {PETE (C10H8O4)n} flexible substrates by magnetron sputtering. These new soft magnetic thin films have magnetization that is comparable to pure Ni81Fe19 permalloy films. Two target compositions (Ni76Fe19Ag5 and Ni72Fe18Ag10) were used to study the effect of compositional variation and sputtering parameters, including nitrogen flow rate on the phase evolution and surface properties. Aggregate flow rate and total pressure of Ar+N2 mixture was 60 sccm and 0.55 Pa, respectively. The distance between target and the substrate was kept at 100 mm, while using sputtering power from 100–130 W. Average film deposition rate was confirmed at around 2.05 nm/min for argon atmosphere and was reduced to 1.8 nm/min in reactive nitrogen atmosphere. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, vibrating sample magnetometer, and contact angle measurements were used to characterize the functional properties. Nano sized character of films was confirmed by XRD and SEM. It is found that the grain size was reduced by the formation of nitride phase, which in turns enhanced the magnetization and lowers the coercivity. Magnetic field coupling efficiency limit was determined from 1.6–2 GHz frequency limit. The results of comparable magnetic performance, lowest magnetic loss, and highest surface free energy, confirming that 15 sccm nitrogen flow rate at 115 W is optimal for producing Ag-doped permalloy flexible thin films having excellent magnetic field coupling efficiency.
Keywords: magnetron sputtering; transmission electron microscopy (TEM); X-ray photoelectron spectroscopy (XPS); permalloy; surface free energy

1. Introduction
Recent trend shift from microelectronics to nano-electronics is demanding the development of flexible nano-thin films suitable for high-tech flexible technologies. The evolution from traditional coatings to flexible thin films are making substantial scientific and viable impact by aiding the emergence of, flexible displays [1], flexible thin film transistors [2], flexible and thin film solar cells [3,4], flexible smart textiles [5], flexile ferroelectric random access memories [6], magneto impedance sensors [7], and flexible photovoltaics [8]. High quality flexible thin films are typically achieved by depositing Inorganic materials, such as metals, functional metals, and nitrides, deposited onto polymer substrates via direct current (DC)/radio frequency (RF) plasma sputtering [9,10], co-sputtering [11], and spin coating [12].
Unique structures with a high density of interfaces, granular magnetic materials are comprised of nano sized ferromagnetic particles that are distributed in an immiscible medium [13]. Cenospheres with

Materials 2018, 11, 439; doi:10.3390/ma11030439

www.mdpi.com/journal/materials

Materials 2018, 11, 439

2 of 20

thin coats of Cu are produced by vibration-assisted magnetron sputtering with significant prospective for the production of novel varieties of metal matrix syntactic foams, along with optimized alternatives of conventional materials of the same type [14]. Thus, gives rise to a variety of enhanced properties that are of fundamental interest and technological importance [15]. The research that was conducted on granulated materials was mainly dedicated on systems in which the granules are elemental metals [15]. Since alloys shows remarkable functional properties, it is of interest to explore granular alloy thin film systems [16]. Magnetic anisotropy in such systems allow for regulating electronic spin currents through magnetically doped nanometer structures by an external magnetic field is of great technological interest [17].
Amongst the materials playing a key role in these nanostructures are noble-metal-free alloy system of Ni and Fe. Permalloy alloy with composition of Ni80Fe20 is a well-known soft magnetic alloy with limited-dimensional structures and forms a FCC structure of the type Ni3Fe. Owing to their outstanding soft magnetic properties, including low coercivity (Hc) and energy loss, high saturation magnetization (Ms), and high permeability (µ), they are widely used in electromagnetic microwave absorption, magnetic recording devices, magnetic resonance imaging, and sensors [18–22]. Obviously, the above-mentioned magnetic properties of NiFe alloys are closely related to the processing parameters, composition, and phase configuration.
Reactive magnetron sputtering is convenient and accurate technique used to introduce the nitrogen into depositing thin film in order to adjust its structural, magnetic, and electric properties [23]. NiFe nitrides can be deposited using an RF sputtering technique for varying nitrogen flow in the range of 5–30% and to tune the various physical and magnetic properties of NiFeN thin films. Different phases of FeN films can be obtained through changing N2 fraction in a mixture of N2/Ar gas flow [24]. A reduction in saturation magnetization was established with the increase of nitrogen flow during sputtering [25–27]. It is also well known that the incorporation of nitrogen by sputtering processes on metals induces the formation of amorphous or fine-grained structures [28]. However, a detailed investigation of magnetic properties with an increase in nitrogen content has not been performed yet on flexible thin films, as reactive nitrogen sputtering may induce structural and magnetic changes. It is clear that processes, which occur at the surface during sputtering, critically affect the functional properties of as-deposited films [29]. Therefore, parameters such as grain size, the binding energies of surface atoms, and sputtering power will control the stoichiometry [30,31]. Permalloy thin films grown by electrodeposition display vortex magnetization with arbitrary chirality and polarity, which is described in terms of dipolar interface minimization [32].
The use of alloying and doping of magnetic thin films are used to fine-tune the properties for practical applications. These heterogeneous alloys can be designed by co-depositing [33] the two immiscible metallic components, one magnetic, the other nonmagnetic (e.g., Co. and Ag) on a substrate. Owing to their immiscibility, the components are likely to segregate ensuing the formation of nonmagnetic matrix with small magnetic precipitates embedded in it [34–37]. After replacing a minor amount of Ti ion with Fe, extremely enhanced ferroelectric characteristics were obtained successfully, while the thin films were annealed in nitrogen, air, and oxygen atmospheres [38]. Thickness dependence, which is mainly due to deposition time or power variations of the magnetic hysteresis observed in NiFeAg heterogeneous alloy films at ambient temperature onto glass substrates [39]. Higher charge voltage could expedite AlCrN coatings having a compact columnar microstructure by means of modulated pulsed power magnetron sputtering (MPPMS), with altered power pulse parameters [40]. In principle, if the particle size dispersal rests constant with thickness, the GMR in heterogeneous alloys would not be affected. GMR effect is a very important phenomenon that happens in magnetic materials going from thin films to nanoparticles over multilayered permanent magnets [41]. Copper-permalloy films were deposited by co-sputtering, inducing Cu into the permalloy lattice results in very resilient spin scattering and alters their chemical, structural, magnetic, and electrical properties [42]. Interfacial scattering affects the magnetoresistance of heterogeneous FeCoAg films and the magnetic couplings between the particles are considerably decreased because of

Materials 2018, 11, 439

3 of 20

the coalescence of the magnetic species [43,44]. Ag concentration in the as-deposited NbCN-Ag thin films were accomplished by adjusting Ag target power to tune the functional properties [45].
In this paper, we report the first results on an experimental study that was carried out on the as-deposited Ag-Permalloy thin films deposited on polymer substrates using mosaic alloy target at room temperature. The effect of silver content, sputtering power, and nitrogen flow rate on functional properties is investigated systematically. The aim of this study is to establish a scientific correlation between structural, magnetic, optical, and surface properties evolved. We have deposited Ni-Fe-Ag films, having a fixed Fe concentration and varying Ni and Ag concentrations applying increasing sputtering power.
2. Experimental Method
Three distinct types of NiFeAg granular thin films were prepared by DC reactive magnetron sputtering on flexible polyethylene terephthalic ester (PETE) substrates. Conventional glass substrates are brittle and non-deformable. In order to develop flexible components from soft magnetic thin films, polymer substrate is most suitable. Further work of mechanical testing is in progress to check the flexibility limits of thin films. Two specially prepared mosaic targets of silver-doped Permalloy (Ni76Fe19Ag5 and Ni72Fe18Ag10) were used in the 5n (99.999%) pure Ar gas atmosphere. The target was composed of Fe, Ni, and Ag. As Ag forms no compounds with Fe, hence the target is believed to be composed of elemental sectors, making it a mosaic formation. Samples 1–3 were deposited by the sputtering of Ni76Fe19Ag5 target, and samples 4–6 by using Ni72Fe18Ag10 target under argon plasma atmosphere. While the samples 7–9 were deposited using reactive sputtering of nitrogenized Ni72Fe18Ag10 using a mixture of N2+Ar. As for the lower magnetization moments and not appreciable P-loss properties, it was decided not to deposit thin films of Ni76Fe19Ag5 under a reactive atmosphere. PG-32B, polymer substrates were provided by lucky corporation China (Beijing, China) having uniform thickness equals to 188 µm thick. Firstly, sputtering power was increased from 100–130 W for different film structure and thicknesses, while keeping the substrate at the system ambient temperature. Secondly, the nitrogenized thin films were grown in the gas mixture of N2+Ar, using varied gas nitrogen flow rates, while keeping the sputtering power constant at 115 W. Two independent mass flow controllers precisely controlled the Ar and N2 flow rates. Aggregate flow rate and the total pressure of Ar+N2 mixture was 60 sccm and 0.55 Pa, respectively. A base pressure of about 4.47 × 10−5 Pa was achieved in the sputtering chamber and the target was sputtered for few minutes at 100 W to eliminate surface contaminations prior to the deposition. All of the thin films in argon atmosphere were sputtered for 100 min, while the sputtering time in reactive nitrogen atmosphere was 110 min. Distance between target and the substrate was kept at 100 mm. The substrate holder was rotated clockwise at 10 rpm to ensure the homogeneity of deposited samples. Deposition processing parameters and sample ID’s are given in Table 1. Thickness of as-deposited thin films was measured by a surface profilometer (VEECO Dektak ADP-8, BJUT, Beijing, China).

Table 1. Thin film deposition processing parameters for two different target compositions.

Sample #
1 2 3 4 5 6 7 8 9

Target Composition Ni76Fe19Ag5
Ni72Fe18Ag10

Gas Flow Rate (SCCM)
Ar = 60
” ” ” ” N2 = 10 + Ar = 60 N2 = 15 + Ar = 60 N2 = 20 + Ar = 60

Sputtering Power (W)
100 115 130 100 115 130 115 115 115

Film Thickness (nm)
180 192 236 185 196 242 198 205 208

Deposition Rate (nm/min)
1.8 1.92 2.36 1.85 1.96 2.42 1.8 1.86 1.89

Materials 2018, 11, 439

4 of 20

The structures of the films were examined using X-ray diffraction (XRD) with Cu Kα radiation (λ = 0.15406 nm) using a current of 30 mA and voltage of 40 kV (Shimadzu, Kyoto, Japan, XRD 7000). Continuous scan was acquired with drive axis = θ–2θ in the range of 20◦ to 80◦. The in-plane static magnetic properties of thin films were measured using a vibrating sample magnetometer equipped with MicroSense easy VSM software 9.13wa in magnetic fields up to 2.1 T. ThermoScientific ESCALAB 250x (Thermofisher, Stockholm, Sweden), X-ray photoelectron spectroscopy (XPS) was used to determine the chemical binding of atoms and composition. Monochromatic source of Al Kα radiation with energy resolution of 0.5 eV and voltage approaching to 1500 eV was applied [9,10]. Argon ion (Ar+) sputtering was used to clean the thin films surface from contamination and oxides. For power loss (PL) evaluation, thin film samples (20 × 40 mm2) were accurately positioned in the mid of microstrip line (MSL), having a characteristic impedance of 50 Ω. Two ends of the MSL are tightly coupled to a vector network analyzer (CETC, AV36850A, Agilent, Santa Clara, CA, USA), which can measure scatter parameter in the blue tooth frequency range of 1 MHz to 3 GHz [46,47].
Two calibrated near filed probes (RF 400-1/2, Agilent, Santa Clara, CA, USA) were used to investigate magnetic field coupling efficiency, first as a transmission coil linking to signal generator (Agilent, Santa Clara, CA, USA, E8257D) and the second as a receiver coil joining with EMC analyzer (Agilent, E7405A). After an alternating current (AC) was allowed to pass from the transmission coil, magnetic lines of field were produced and were passed through the receiving coil. Thus, creating an induced electromotive force (EMF) around it, which in turn, formed a magnetic field couple. Resultant values were measured from EMC receiver by attaching the thin film samples to the transmission coil as a backplane and efficiency of magnetic field couple was measured. Complex permeability of the samples was measured by Agilent-4396B network spectrum impedance analyzer equipped with a dielectric material test fixture (Agilent, 16453A). Toroidal shaped samples with outer and inner diameter of 8 mm and 3 mm, respectively, were cut from the thin films with an especially designed alloy-steel cutter.
Surface free energy at ambient temperature of thin films was measured by contact angle measurements; details are given elsewhere [9]. Scanning electron microscope (JSM-7610F, JEOL, Beijing, China) was used to examine the surface morphology and elemental analysis by using aperture angle control lens, which automatically optimizes the spot size at both high and low currents.
3. Results and Discussion
3.1. X-ray Diffraction Phase Structure (XRD)
Figure 1 is the XRD pattern of flexible thin films illustrating the effects of composition and sputtering power on the structure of the as-deposited samples. Figure 1a shows the pattern of samples 1–3 deposited using Ni76Fe19Ag5 target composition. As the sputtering power is increased from 100–130 W for sample 1–3, respectively, the broadening of reflection and shift toward a higher angle is observed and indicated as a vertical line. Evident diffraction peaks of pure silver crystal faces are at ±42◦ (111) in all of the samples and 62◦ (220) in sample 1. The Ag (111) peak depicts a rocking curve breadth of 4.5◦ in the as-deposited films. The intensity of the Ag (111) peak decreases at 115 w, and then increases at 130 w sputtering power, depicting that line breadth decreases as the sputtering power increases, showing that smaller crystallites of Ag are formed and the NiFe lattice is further strained due to coherent precipitation of Ag particles. As the grain size decreases, there is a substantial rise in the volume fraction of grain boundaries or interfaces. This feature strongly effects the chemical and physical properties of the thin films. Specifically, a decrease in the grain size results in better soft-magnetic properties. Results indicate the presence of two FeNi peaks at 52◦ and 46◦, corresponding to (111) and (220) planes, respectively, in sample 1, while there is a weak peak at 75◦ (220) in samples 2 and 3.

Materials 2018, 11, x FOR PEER REVIEW Materials 2018, 11, 439

5 of 19 5 of 20

FFiigguurree 11.. X-Xr-aryaydidffirfafrcaticotinon(X(RXDR)Dp) apttaetrtnernof otfhitnhifnilmfislmussiunsgindgiffdeirfefenrtentatrgtaetrgceotmcpoomspitoiosnitsio(nas) (Na)i7N6Fie7619FAeg195;A(gb5);N(bi7)2NFei1782AFge1108,Aagn1d0,sapnudttsepriuntgteprionwgepro(wsaemr (pslaems 1plaensd1 4an=d1400=W10:02Wan: d2 a5n=d1515=W11:53Wan: d3 a6n=d1630=W13)0. W).
Strong (111) reflections were perceived demonstrating highly (111) textured thin films with FCCSsttrrouncgtu(r1e1s1o) frebfloethctiNoniFsewaenrde Apegr.cSeeivcoednddleym, tohnesNtraiFtien(g20h0ig) halnyd(1(21210))telixnteurinedtetnhsiintyfiilnmcsrewasitehs FwCitCh sthtreuicntucrreeassoinf gbodtehpNosiiFtieoannpdoAwge.r,Siencdoincadtliyn,gththeeNbirFeea(k2d0o0w) annodf (t2h2e0()1l1in1)etienxtteunrseitoyf itnhcerefialmsesatwairtohutnhde i1n3c0reWas.inTghedeppoossiittiivoenrpoolewoefr,tihnediicnactrienagsethoefbsrpeuakttdeoriwnng opfotwheer(1i1s1t)atkeixntgurpelaocfethine ficelmrtaaitnarraonugneds,13a0toWo. Thhigehpsopsuittitveerirnoglepoofwtehre cionucrldeasleeaodf tsoputottoereinnegrgpeotwiceardi-sattaokmins,gwphlaicche icnouceldrtaininduracnegmeso,raphtooolohgiigcahl sapnudt/toerrisntgrupcotuwraelr dcoefuelcdtsl.eFadigutoreto1obesnheorwgestitcheadX-RatDompsa,ttwerhnischofcosaumldpilneds u4c–e6 mthoartpwhoerloegpicreapl aarnedd/boyr sutsruincgturtaalrdgeeftecctso.mFpigousrietio1bn shNoiw72Fs eth18eAXgR10Dapt atatnernisnocrfesaasmedplessp4u–t6tethriantgweproewpreerpafrreodmby1u0s0i–n1g3t0argWet, croesmppecotsiivteiolyn. NWi7i2thFet1h8Ae gd1e0caretaasneinofcrNeaisecodnstpeuntttearnidngthpeowinecrrefraosme o1f00A–g1,30reWfle, crteisopnesctsihviefltye.dWsiltihghtthley dtoewcraeradses eoaf cNhioctohnetrenfotraanldl othf ethinecsraemaspeleosf,Aingd, irceaflteinctgioenitshsehrifNteidFesAligghatlllyoytoinwgaordrssteraacihn ofrtohmer cfoorhaelrleonft tNheiFsea/mAgplienst,eirnfadciceast[i1n3g,4e8it]h. er NiFeAg alloying or strain from coherent NiFe/Ag interfaces [13,48].
EEvviiddeennttddififfrfarcatcitoinonpepaekaskosf Aofg (A11g1)(1in11s)aminplesasm4–p6leasre4a–t6±a4r3e.5◦atwi±t4h3s.5li°ghwtliythhigslhigerhtinlytenhsigithieesr. Ainstseunmsitiinegs. aAllsosyuimngingbeatlwloeyeinngNbieFtewaenend NAigF,e tahned pAega,kthsehipfteackorsrheisfptocnodrrsestpooAndgs dtoiluAtgeddiilnutNediFien. RNeisFuel.tsReinsudlitcsatiendthiceatperethseenpcreesoefntcweooFf etwNoi pFeeaNkis paeta5k4s◦ aatn5d4°47a◦ndco4r7re°scpoornredsipnogntdoin(1g11to) a(1n1d1)(2a2n0d) p(2la2n0)esp, lraensepse,crtievsepleyc, tiinvesalym, pinles4a,mwphleile4,thwerheilies tahwereeaiks paewakeaatk7p6e◦a(k22a0t)7in6°sa(2m20p)leisn2saanmdp3le.sT2heanNdiF3e. (T1h1e1)NpieFaek(1o1f1s)apmepakleo6f issamstrpolneg6eisst sattrohnigghespt raotcheisgshinpgrpocoewsseirn(g1p30owWe)r, (b1u3t0aWpp),ebaurst aopnplyeaarssaonslliyghats sahsoluigldhet rshatoluolwdeerr aatnlgolwe aenrdanpgolwe earn(d10p0oWwe),rr(e1p0r0esWen),tirnegpraevseenrytiunngiafovrmerydiusnpiefrosrimondoifspNeirFseiownitohfinNtihFee Awgitmhiantrtihxe. AThgempaeatrkixb.rTeahdetpheoafkbborteha, dNtihFeofabnodthA,gNrieFfleeactniodnAs garreebflreocatido,nins dairceabtirnogadei,thinedrincoatni-nugneifiothrmer sntorani-nusn,infoarnmo sptarartiincsl,ensaizneos,poarrtwicleells-idziesst,riobruwteedll-cdoinsctreinbturtaetdiocnosnocfenNtirFaetiAongsaollfoNy.iFDeuArginagllospyu. Dtteurriinngg tshpeutatder-iantogmthsepaods-saetsosmesneprogsysensseaernlyerfgeywnteeanrslyoffeweV,teannsdoifneVth,eancoduirnsethoef ccoounrdseenosfatcioonndoenntsoattihoen sounbtsotrtahtee,saudb-sattroamtes, aadre-aqtuomenschaered qaunednmchaeydfoarnmd amnaaymfoorrmphaonusaomrofirnpeh-ogurasinorstfrinuect-ugrrea.inAsgtrpuecatkusrew. eAreg cpoemakpsarwederwe ictohmPpDaFr#ed04w-0i7th83P, 0D1F-0#80740-701798,36,50-218-07817, 0a7n1d98, 76-50-529877,1w, ahnilde N87iF-0e5r9e7fl,ewcthioilnesNwieFree rsetufldecietidonins cwoemrepasrtuisdoinedwiinthcoPmDFpa#r4i7so-1n40w5i,th37P-0D4F74#,4a7n-1d40035-,13170-90.474, and 03-1109.
FFiigguurree 22 sshhoowwss tthhee XXRRDD ppaatttteerrnnss ooff ssaammpplleess 77––99 pprreeppaarreedd bbyy uussiinngg ttaarrggeett ccoommppoossiittiioonn NNii7722FFee1188AAgg1100uunnddeerr AArr++NN22 ggaass mmiixxttuurreewwitihthvavryarinyginngitrnoitgreongflenowflroawtesraatteascaotnsatacnotnssptuatnttersinpgutpteorwinegr opfo1w0e0rWo.fR1e0la0tiWve. iRnteelantsiivtye (i%nt)einsssithyow(%n)aissthsheovwernticaasl ltihneesvienrttihcealXlRinDespainttetrhne. GXaRsDmpixattuterreni.nGthaes smpiuxtttuerreinginprtohceessspius tttheerimngospt rimocpeossrtains t tphreocmesosisnt gimpaproarmtaentetr,parnodceistshinasgapsaurbasmtaentteira,l iamndpacitt ohnasthea csoumbsptoansittiiaolnimanpdatchteopnhtahseecsotrmupctousrietioofnthanedfiltmhes [p4h9a].seChstarruaccttuerreistoifc tshhearfpilmpesa[k49o]f.cCuhbaicrasctrtuercitsutrice sohf aArgp (p1e1a1k) aosfacruebsiucltsotrfulcatrugreer gorfaAings (is11d1e)paicsteadraetsu41lt◦,obf ulat rtgheerregarraeinnsoiasdddeiptiiocnteadl paeta4k1s°t,hbaut tartehearsesoacriaetendo taodtdhiatitosnpaelcpifiecaksstruthcatut raer.eWashseoncicaotendsitdoerthinagt tshpeecbirfeicadsttrhuoctfutrhee. pWehaken, itcoisnasicdoenrivnignctihnegbinrefeardetnhcoefththaet tpheisakp,eaikt sips eacificeosncvriynsctainllgineinbfeehreanvcioer. tThhaet ptehaisk opfeoarkthsoprheocimfiebsic AcrgyNst3al(l1in12e) cboerhraevspioorn.dTs htoe thpeeavkaluoef oofrt2hθo=rh3o6m.5b◦ic[5A0]g. NTh3 e(1h1i2g)hceorrrinestepnosnidtys otof atnheAvgapluheaosef p2θea=k3is6.d5°ue[5t0o].thTehe(1h1i1g)hperrefinerterendsiotyrioenf taantiAong. Aphlsaos,ethpeeFakeNisi adnude (tFoe3tNhei)(N11p1)hapsreesfearrreednootrflieunotraetsiocenn. tAalnsdo,atrheenFoet Neaisayntdo d(Feete3Nctib) yNXpRhDa.sHesenarcee tnhoet sfilgunoarel socfeFnetNani danadre(Fneo3Nt ei)asNy ptohadseetseacrteblyowXeRrDth. aHnenthcee mthoeresiflgunoalreosfceFnetNAi ganpdha(sFee.3Ni) N phases are lower than the more fluorescent Ag phase.

Materials 2018, 11, 439 Materials 2018, 11, x FOR PEER REVIEW

6 of 20 6 of 19

Nitrooggeenniizzeedd AAgg--PPeerrmmaalllooyyththininfiflimlmrerveevaelaslcsucbuibcincitnritdreidoef oNfiFNeiFbelobnelgoingintogstpoacsepagcreougpro2u2p1 h22a1vihnagvcianlgcuclaaltceudladtendsditeynosfit7y.3o3fg7/.3c3mg3./cSmam3. pSalem-7palet-170astcc1m0 sflcocmw rfaloteworfantietroofgennitrsohgoewnssthhoewmsatjhoer pmeajkoropf ceuakbiocf(Fcue3bNici)(FNe3(N21i)0N) a(t25140◦).at 54°.

FFiigguurree 22.. XXRRDD ppaatttteerrnnooffnniittrrooggeennizizeeddththininfiflimlmssuusisninggtatragregtectocmompopsoitsiiotinonNNi72i7F2eF1e81A8Agg1010,,uunnddeerrAArr++NN22 ggaass mmiixxttuurree wwiitthh ddiiffffeerreennttaammoouunnttssooffrreeaaccttiivveenniittrrooggeenndduurriinnggssppuutttteerriningg..
At an increased nitrogen flow rate of 15 sccm, sample 8 shows the peaks with higher intensity valueAsteaxnacintlcyreaatstehdensiatrmogeepnoflsiotiwonrawteitohfo1u5t sacncyms,hsiafmt, psuleg8gesshtoinwgstthhaet ptheeakisncwreitahsehiogfhneirtriniftiecantsiiotyn vdaoleusens oetxaafcftelyct atht ethleatstiacme epaproasmiteiotenrsw. Aithlsoou, tthaenylinsehibfrt,easdutghgeosfttinheg Athgat(1t1h1e) ipnecarkeaisseoobfsenrivtreidficnaotitotno dinocerseansoet aasffsemctatlhleerlagtrtaiicnespoafraAmgeatreersf.oArmlseod, tahnedlilnaettibcreeaisdnthotosfttrhaeinAedg d(1u1e1)topecaokheisreonbtsperrevceidpintaottioton ionfcrNeiaFsee apsarstmicalellse. rTgorgaeinthseorf, Awgheanresfpourmtteerdedanbdy lmatteiacnesisonf oltowstr-Zainreedacdtiuvee tnoitcroohgeerneniot npsr,ecthipeiytamtioany oofccNuipFye ipnaterrtisctlietisa.l sTiotegsetinhetrh,ewuhneint cseplluottfesrpeduttbeyremdesapnescioefs,lionwst-iZgarteinacgtiavneanltietrroagtieonn ioofntsh,ethuenyitmcealyl. oAcccuopmybiinnteedrsotuitticaol msiteeosfinthtehsee uconnitdcietilol nosf mspauyttleeraeddtsopaecniaens,oicnrsytsitgaaltliinneg satnruaclttuerraetoiofnthoefaths-eduepnoitsicteeldl. Afilmcombebsiindeeds ocountcsotrmaienoinf gthtehsee lcoonngd-ritainonges moradyerleinagd. tAosafnoarnFoecrthysetastllriuncetustrreuicstuBrCeCofatnhde afosr-dNepiFoesiitteids fiFlCmC.beTshideespocossnisbtirliatiynionfg othceculopnygin-granthgee oinrdteerrsitnitgia. lAssitfeosr Fine tthhee sBtrCuCctuarnedisFBCCCC carnydstfaolr sNysiFteemit iiss FdCisCsi.mTihlaerpboescsaibuislietyoof fdoifcfceurepnytincglotsheepinatcekrisntgit.iaFlisgiuterse i2n sthhoewBCs Ca carnodssFCwChecnrynsittarlosgyesntefmlowis diniscsriemasileadr btoec2a0usscecomf,dainffoetrhenert c(Floes3Ne pi)aNckipnega.kFaigpupreear2ssahto7w5s° aalcornogsswwithhenallntithreogoethneflropweaiknscrdeeapseicdtetdo 2a0t lsocwcmer, annitortohgeern(Ffel3oNwi)rNatepse.akPeaapkpseahresigath7t 5(◦inatleonnsgitwy)ithisalllotwheerotthhearnpethaeksidnetepnicstietidesatolfowsaemr npilter-o8gednufleowto roavteers-.nPiteraifkicsahtieoinghotf (tihnetetnhsinityf)ilmis ,loPwDeFr#0th3-a0n65th-7e5i2n9t.eTnhsiitsiessugogf essatms tphlaet-8indcureeatsoe oovfenri-tnriotgriefincaatbioonveoaf tcheerttahininlifimlmit,dPuDriFn#g03s-p0u6t5t-e7r5in2g9.aTffheicstssutghgeelsotnsgt-hraatnignecroeradseerooffntihtreotgheinn afbilomvse. aThceeritnatinerlsitmitiiatldsuitreinign sthpeutFteCrCingNaiFffeecatlslotyheislobnigg-grearngtheaonrdtheartoifnththeethBinCCfilmFes.. WThheilientbeortshtitairael ssimteailnletrhaesFcCoCmNpaiFreedaltlooythise baitgogmeirctrhaadniuthsaotfina tnhietrBoCgeCnFaet.oWmh(i0l.e07b5otnhmar)easnmdaslilnerceasexciosmtinpgarsepdatcoe tihneaatFoCmCicsrtraudciutusroefias lnairtgroegr,enit aatcocmep(t0e.d07m5 onrme)naintrdosgiennceaetoxmistsintog sbpeaicnecionrpa oFrCaCtedst.ruAcstuthreeins iltarroggeer,nitpaacrcteiapltepdremssourreeniistriongcerneaasteodm, sthtoe bberoinadcoernpionrgatoefdt.hAesXth-reanyitdroifgfreancptiaorntiaisl parecslesuarreinisdiinccarteioansedof, tthheebnroaandoecnryinstgaollfintheenXa-truaryedoifffrthacetifoilnmiss abeccleaaursiendthiceatiionncoorfptohreantiaonnocorfysntaitlrloingeennatfuarveoorsf tthheefilgmroswbethcauosfestmheailnlecrorcproyrsatatilolinteosf n[2it8r]o. gAent flaovworesr tnhietrgorgoewn tphaorftisaml aplrleesrscurryesst,alnliittersog[2e8n].iAontslodwoernnoittrroegaecnt wpaitrhtiaAl pg,reFsesu, rNesi,, noirtrNogiFene,ioannsddnoitnroogt erenacist winittehgAragt,eFdei,nNtih, oeriNntieFres,tiatniadl nsiitteros,gecnauissiinngteagnraetexdpainnstihoeninotfertshteitiuanl sititcees,llc.aAutsiinngtearnmeexdpiaanrysionnitroofgthene upnreitsscuelrle. ,Aat inchteermmiecdailarryeancittiroongeanmporensgssutren, iatrcohgeemn,icaalnrdeaFctei,onNaim, oorngNstiFneitriosgepno,sasnibdleF,e,cNaui,sionrgNtiFhee idsipspoosssiibtiloen, coafunsiintrgidtehepdhiasspeoss. iAtitonhiogfhneirtrniidtreopgheansepsr.eAsstuhreigsh, edrefnoitrrmogateinonproefssthuerefso,rdmeefodrmniatrtiidone pofhtahsee fboergminesdannidtritdhee prehsausletabnetgsitnrsuacntudrethies aregsauinltannatnsotcrurycstutarleliinsea. gain nanocrystalline.

3.2. (XPS) Binding Energy and Surface Composition

Ernest Rutherford (1914) equation is widely used to estimate the electron binding energy of discretely emitted electrons, as the energy of an X-ray with particular wavelength is known (Al Kα X-rays, Ep = 1486.7 eV). Calculated kinetic energies is according to Equation (1):

KE  hv  BE   s

(1)

Materials 2018, 11, 439

7 of 20

3.2. (XPS) Binding Energy and Surface Composition
Ernest Rutherford (1914) equation is widely used to estimate the electron binding energy of discretely emitted electrons, as the energy of an X-ray with particular wavelength is known (Al Kα X-rays, Ep = 1486.7 eV). Calculated kinetic energies is according to Equation (1):

Materials 2018, 11, x FOR PEER REVIEW

KE = hv − BE − φs

7 of(11)9

wwhheerree hhνν iiss tthhee eenneerrggyy ooff tthhee pphhoottoonn,, BBEE iiss tthhee bbiinnddiinngg eenneerrggyy ooff tthhee aattoommiicc oorrbbiittaall ffrroomm wwhhiicchh tthhee eelleeccttrroonnoorrigigininaatetess, ,ananddφsφ,si,s itshethweowrkorfuknfcutniocntiodnepdeenpdeenndt eonntmonatemriaatlearniadl tahnedsptheectsropmecettreorm. Tehteerw. Tidhee swcaidneosfctahninoffitlhmins dfielmpisctdsevpeircytssvmearyll sOm1aslal nOd1sCacnodntCencto,nwtehnict,hwahreicdhuaeretodaudesotorbaeddsoCrObeadnCdO/oarnCdO/o2r, fCoOrm2,efdoromnetdheonsutrhfeacseu.rAfarcgeo. nAirognon(Aior+n)(sApru+)ttsepriuntgtewriansguwseads utosecdletaonctlheeanthtihnefithlminsfsiulmrfsacseu.rface.
FFiigguurree 33 sshhoowwss tthhee XXPPSS ssppeeccttrraa ooff AAgg33dd ffoorr tthhiinn fifillmm ssaammpplleess ((11––99)) tthhaatt aarree ddeeppoossiitteedd oonn PPEETTEE ssuubbssttrraattee.. TThheebibnidnidnigngeneenrgeyrgoyf soilfvesirlvinersaimn pslaem-1pinlec-r1eaisnecsrceoansessistceonntlsyiswteinthtlythewiinthcretahsee ionfcirnetaesnesitoyf ainntdenthsietybiannddintgheenbeinrgdyinogf e3n7e4regVy iosfr3e7la4teedVtios trheelastteadblteoAthge+.sStatbableilAityg+o. fSstialbvielirtyis omf asiinlvlyerdiusemtoaitnhley pdrueesetnocethoef pNrieasenndcFeeoaftNomi sanindnFeearabtoymloscaintionnesa.rTbhyelolacragtieodnisf.feTrheneclearbgeetwdeifefnereelneccetrobentewgeaetnivietlieecstorof AneggwatiitvhitoitehseorfeAlemg ewnittsh(NotihaenrdelFeem) egnentser(aNtei satnhde Fche)anggeeneorfaetleescttrhoencdhiastnrgibeuotifoenleactttrhoenindtiestrrfiabcuetiisodnuaet ttoheNiinFteerdfeapceosisitdioune. to NiFe deposition.

FFiigguurree 33.. HHiigghh--rreessoolluuttiioonn XX--rraayy pphhoottooeelleeccttrroonn ssppeeccttrroossccooppyy ((XXPPSS)) AAgg33dd ssppeeccttrruummoofftthhiinnfifillmmss11––99..
Samples 2–9 have almost same range of binding energies, while the intensities of samples 3, 6, and 9Saamrephleisgh2e–r9 dhuaveetoalimncorsetassaemd espraunttgeerionfgbpinodwienrg, menoerregiFees,awndhilNeithaetoimntsentesnitdiesstoofaspapmeparleast3t,h6e, asnudrfa9cea,rewhhiiglehekreedpuiengtothinecroevaesreadll ssptouitctherioinmgeptroywsearm, me.oIrne aFdedaitniodnNsiilavteormcsomtepnodusntdosaaprpeeatyrpaitcathlley sXu-rrfaayces,ewnshitiilveek.eAepgi3ndg rtehgeioonvehraalsl wstoelilchsipolmit estpryins-oamrbeit. cInomadpdoniteionntssi(lΔve=r c5o.5m~5p.o66unedVs).arPeeatykpsichaalvlye Xas-ryamymseentrsiicti“vpee. aAk gs3hdapree”gifoonr thhaisn wfilemllssp1–li3t sapnidn-somrbailtl bcoinmdpinogneenntesrg(∆y s=hi5f.t5s~t5o.w66aredVs).loPweaekr svahlauvees afosyrmsammeptrleics“4p–e9aAk gsh3dappee”afkosrbthroinadfielnmws 1it–h3 raensdpescmt atlol binincrdeiansgeeonfeArggy psherifctesnttoawgea.rdLsosloswfeeartvuarelusews eforer snaomt opblesser4v–e9dAogn3dboptheaskids ebsrooaf dbeinndwinigtherneesrpgeyctoftoeainchcrsepaisne-oofrbAitgcpoemrcpeonnteangte[.5L1o,5s2s]f.eatures were not obserFviegduroen 4baothshsoidwess othfebiFned2ipngsepneecrtgray ooff esaacmh pspleisn-1o–rb9itacnodmapocnloenset [v5i1e,w52].of the Fe2p2/3 region, indicFaitginugret4haeshpoowsssibtlhee sFtea2tepsspoefcFtrea. oTfhseambipnldesin1g–9eannedrgaiecsloosef v7i1e1w.77ofathnedF7e223p.28/23 ereVgiaorne, irnedlaicteadtintgo tFhee2pp3o/2ssaibnlde stFaet2eps 1o/2f Freeg. ioTnhse, birnedspinegctievneelryg. ieTs hoef 71b1in.7d7inagnde7n2e3r.g8y2 eVdisatriengrueliastheeds tothFee2pch3/e2maincadl Feen2vpir1o/n2 mreegniot nthsa, trethspeeacttoivmeliys.bTehseubbijencdteindgtoe.nergy distinguishes the chemical environment that the atom is be subjected to.

MMaatteerriiaallss22001188,,1111,,4x39FOR PEER REVIEW Materials 2018, 11, x FOR PEER REVIEW

88 ooff 2109 8 of 19

FFFiigigguuurrreee444...((a(aa)))HHHiigigghhh--r-rreeesssooolluluuttitioioonnnXXXPPPSSSFFFeee222pppssspppeeecccttrtrruuummmoooffftththhiininnffiiflilmlmmsss111–––999;;;((b(bb)))ssshhhooowwwssstththheeesssuuurrrvvveeeyyyaaannndddsssmmmaaallllll pppeeeaaakkkooofffNNN111sss...
BBrrooaaddssaatteellliltiteeppeeaakkssddeeppicicttsstthheeeexxisistteenncceeooffooxxididizizeeddFFee2+2+aannddFFee3+3+ssttaatteessininssaammppleless22,,55,,aanndd88 tthhaattaBarreeodadedeppsoaostsietilteledidteaatptaeanankosoppdttiemipmiacaltlsppotohwweeerxroiosftf1e11n15c5eWWof[[5o53x3]i].d.AiAztetoodmmFiceic2s+seenannssidtitiviFvieti3ty+yfsfatacactttoeorsr(i(AnASsSFaFm))apattl9e90s0°2°o,of5f,xxa--rnradayys8s ftfohorartFaFere2e2ppdeispiso2s2.i6.t6e88d66,,amtmaunuccohhphthiimgighahleerprotwthhaeanrno0f0.41.4717757Wffoor[r5N3N]1.1sAs,,totthmhisiisccscaeannnsbibteieviutuysseefdadcttotoor c(cAoomSmFpp)uuattee90tth◦heoefaaxtto-ormamyicisc pfpoeerrrcFceeen2ntptaagigsee2ss.6ini8n6t,thhmeeutthchihninhfifiglimlhmesrs..tShSlailginghh0t.tl4yly7h7hifgioghrheNerr1bsbi,nintdhdiinisngcgaenennbeerrgugysyeodofftsosaamcmopmplelpeu11t(e(77t1h12e2.2.a2teoeVmV))iicsisppeporocssessnibitblaylgyeddsuuiene tttohoeeeltelhecictntrrofionlnm--ddse.efSficilciigeienhntttlFyFehe2+i2g+shsitieteressb,,winwhdhiicinchghaearnreeercgcrreyeaoattfeedsdabmbyyptlthehe1eb(b7rre1ea2ak.2kiniengVg)ooifsfNpNoi-is-FsFeiebblbyoondndudses..tFoFee22lpepcrtreregoginoi-ondnesfishhcoiowewnsts sFsiegig2n+nifisfiicitcaeansn,ttlwylyhsisecehppaaarrraeatcteerdedastspepdininb--oyorrtbhbiteitbccoroemmakppionongneeonnfttsNs (i(Δ-ΔFe==b1o12n2.d0.05s5. eFeVeV2))paarnnedgdipopneeasakhksoswhhasavsveieganasisfiyymcmamnmteleyttrsriciecpsashrhaaaptpeede,, wswphhiinliel-eoFrFbeei2t2ppc1o/12/2msspppeoecnctetrrunumtms (s∆shho=oww1s2s.m0m5uueltlVtipi)plealetntdssppliletiatttikninsggh[a[55v44e]]..aNsNy11mssmssppeetecrctitrcruusmhmaapanend,dwssuhurilrveveeFyyei2sips 1dd/i2sispsplpalaeyycetedrduimnin FsFhigioguwurrese4m4bbuflfotoirprslsaeamtmspppllelietstsi7n7–g–99.[.54]. N1s spectrum and survey is displayed in Figure 4b for samples 7–9.
FFFiigigguuurrreee555sshshohowowwsstshtethheNeiN2Npi2i2rpepgrrieoegngioisonpnescsptpreueccmttrruoumfmsaoomffpssalaemms p1p–lel9essa1n1–d–99thaaenndpdretthsheeenpcperreoesfseeNnncicesepoeofcfiNeNsiiisnsppdeeicfcifeieesrseinnint dsdtiafifftfeeersre.enTnthtsesttapateteeassk..sTTohhfeeNppie2eapak3ks/s2oorfefNgNiio2in2ppl3o/32/c2raretegegdioioannrololuocncadatte8edd57aa.r3rooauunnnddd88685157.74.3.3eVaanncdadn886b61e1.4.a4seseViVgnccaeandntbobeemaasesstsaigilglninceedNdit2to+o mamnedettaaNlllilicicsaNtNeil2il+2i+teaa,nnrdedspNNeicitsisvaateteleylllil[ti5tee5,,].rreTeswsppoeecmcttiviavjeoelrylyN[[5i255p5]].p. TeTawwkosohmamsaajsojiorgrnNiNfiic2i2appntplpyeeasakpkslsithshapasisns-soigirgnbniifitficcicoaanmntptlyloynsesppnlitltist s(sp∆pini=n--o1or6rb.b4ititeccVoom)m. pNpooinnXeenPntStsss(p(ΔΔec==tr1u166m.4.4heeVaVs)).c.NoNmiiXpXPlePSxSsssphpeaecpcttreruusmhmohwhaaisnsgccooammmpplielxextxusrshehaaoppfeecsoshhroeowwleinivngeglaanmmdixisxtatuutrereleliotoeff cfcoeoarreteulreleevsve.elSl aaantnedldlistsaeatfteelallilttiuteerfefeseaanttuourtretesos. .bSSeaatcteoellnliltfiteuesfefeedaatwtuuriretehssonnxooitdt titozoebdbeencicooknneflfuupsseeedadkwsw.iNtithhiFooexxicdiodimzizepeddounnnicidckkseelclappneeaaaklkssos. . NhNaiFivFeeecccooommmpppoloeuxun,ndmdssucclatainpnalaelstls-osophhlaiatvvpeeeccaookmmsp[p5lel3ex]x.,,mmuultltipiplelett--ssppliltitppeeaakkss[[5533]]..

FFFiigigguuurrreee555...HHHiigigghhh--r-rreeesssooolluluuttitioioonnnXXXPPPSSSNNNii2i22pppssspppeeecccttrtrruuummmoooffftththhiininnffiiflilmlmmsss111–––999...
TTThhheeeiininnttteeennnsssiitittiieieesssvvvaaarrriieieessswwwiititthhhssspppuuutttttteeerrriininngggpppooowwweeerrraaannndddsssaaammmppplleleesss333,,,666,,,aaannnddd999hhhaaavvveeettthhheeehhhiigigghhheeessstttiininnttthhheee rrreeessspppeeeccctttiivivveeessseeetttooofffeeexxxpppeeerrirmiimmeeennnttsts,s,,wwwhhhiliielleessasamammpplpelele888aatatttatatianinieneddedmmmaaxxaimixmiumumumminintitenentnessintistyyi,t,yww, hwhicihchihcwhwawassaddseepdpoeospsiotitesedidteaadtt 1155 ssccccmm nnititrrooggeenn ffloloww rraattee.. AASSFF ffoorr nnicickkeel,l, 33.6.65533,, isis hhigighheerr tthhaann FFee mmaakkiningg itit eeaassieierr aanndd mmoorree aaccccuurraatteeffoorrddeetteerrmmininininggtthheeaattoommicicppeerrcceennttilieleinintthheetthhininffilimlmss..TTaabblele22sshhoowwsstthheeccoommppoossititioionn((aatt

Materials 2018, 11, 439

9 of 20

at 15 sccm nitrogen flow rate. ASF for nickel, 3.653, is higher than Fe making it easier and more accurate for determining the atomic percentile in the thin films. Table 2 shows the composition (at %), binding energies, ASF, oxidation state and separation values between peaks during XPS at high vacuum.

Table 2. Binding energies, separation values, atomic sensitivity factor (ASF), oxidation state, and chemical composition during XPS.

Element
Ni Fe Ag N

Binding Energy/s (B.E) eV
2p3/2 = 873.7 2p1/2 = 857.3
2p3/2 = 711.7 2p1/2 = 723.8
3d5/2 = 367.5~368.3 3d3/2 = 373~374
N1s = 400.9

Separation (∆) eV
16.4
12
5.5~5.6 -

Atomic Sensitivity Factor (ASF [56])
3.7
2.7
5.2 0.48

Oxidation State
Ni2+ Fe2+ Fe3+
Ag3d
-

Composition (at %) Samples
1–3 4–6 7–9
77.9 73.2 72.5

16.9 17.1 17

5

9.7

9.3

-

-

1.2

The sample compositions were measured during XPS using pass energy of 100 eV and spot size of 500 µm, and were confirmed by EDS analysis in scanning electron microscope. The composition of thin films was found to be very close to the target compositions as mentioned in Tables 1 and 2. Although we have tried to maintain the ternary concentration Ni76Fe19Ag5 (samples 1–3) and Ni72Fe18Ag10 (samples 4–9) stoichiometry, we have found that this stoichiometry is slightly broken during sputtering under N2+Ar atmosphere. N1s peaks correspond to nitride formation in samples 7–9 and endorses the XRD results in principal. Higher binding energy states of nitrogen are thermodynamically unstable and decay rapidly with Ar+ sputtering, even at low beam energies [57].
No traces of individual Ni or Fe regions were found, indicating that the flexible thin film samples remains as silver-doped Permalloy. The inaccuracy in all of the peak positions is estimated to be 0.05 eV.
3.3. (VSM) Static Magnetic Properties
Static magnetic properties of as-deposited flexible thin films were measured by using vibrating sample magnetometer at room temperature in magnetic fields up to 2 × 104 oersteds (Oe), as shown in Figure 6.

Materials 2018, 11, 439 Materials 2018, 11, x FOR PEER REVIEW

10 of 20 10 of 19

FFiigguurree 66.. RRoooommtemtempepraertuatruerme amgnaegtnizeattiizoantimoneamsueraesmuernemts eant t2s.21atT 2(a.2)1NiT76F(ae)19NAig756Fteh1i9nAfigl5mtshpinrepfialmreds

pwrietphaArerdgwasituhsiAngr gdaifsfeurseinntgsdpiuffteterreinntgsppouwtteerri;n(bg)pNowi72eFre; 1(8bA) gN1i0 tFheinAfiglmsthpirnepfialmresdpwrietphaArerdgwasituhsiAnrg

72 18 10

different sputtering gas using different

power; and sputtering

p(co)wNeir7;2

Faen1d8

A(cg)10Nthi7i2nFefi1l8mAgs1p0 rtehpianrefdilmwsithprNep2+arAerdgwasitmh ixNtu2+rAe rusginasg

different nitrogen flow rate.

mixture using different nitrogen flow rate.

TThheehhyyssteterreessisislolooopps swwereeremmeaesausruedredaloanlognegaseyasayndanhdardhaarxdisamxiasgmneatgiznaettioiznatoifonthionf ftihlmins fiwlimths rwesitphecrtestpoectthteo athpeplaiepdplimedagmneatgicneftiiecldfi.elAd.ll Aolfl othf ethseasmamplpeslesdedpeipcitctrereppreresesenntattaitviveessoofftt mmaaggnneettiicc cchhaarraacctteerriissttiiccss wwiitthh rreeaassoonnaabbllyy ssmmaallll vvaalluueess ooff ccooeerrcciivviittyy..
FFiigguurree 66aa sshhoowwssththeehyhsytestreerseissilsooloposposf soafmspalmesp1le–s3 1th–a3t tahraetdaerpeosditeepdoasittvedaryaitnvgaproywinegr dpuowrinegr dspuuritntegrisnpgutwteirtihngAwgitehquAaglseqtoua5l%s toin5p%erinmaplelromy.aTllhoye. rTehsueltraensut letaansyt eaaxsiys amxiasgmneatgiznaettiioznastio(nMs)(Mare) a2r8e.1248.e1m4 eum/gu,/g3,83.685.65ememu/ug/g, ,aanndd 4433..1199 eemmuu//ggfoforrththeecocmompopsoitseitsews iwthitthhethceorcroersrpeospndonindginpgowpoewr oefr 1o0f01,0101,51,1a5n, dan1d3013W0 W, r,ersepsepcetcivtievleyl.yT. hTehseesevvalauluesesaarereccoommppaarraabblelettootthhee 2255––4455 eemmuu//ggffoorr ppeerrmmaallllooyy eeppiittaaxxiiaall tthhiinn fifillmmss ggrroowwnnoonn(0(00011) )MMggOOsusbusbtsrtartaetses[5[85]8. ]T. hTehrearnagnegoefoMf Mincirnecarseeadsewditwh iitnhcrienacsrienagsitnhge tdheepodseiptioosnitpioonweprobweecraubseecoafuasestoeaf day sintecaredayseinincrfielamsethinickfnilemss tfhroicmkn1e8s0s nfmromto 213860nnmm. Ctooer2c3i6vitnymo.f Csaomerpclievsitiys olofwsafmropmle7s.6is1–lo7w.55frOoemo7f .n6a1n–7o.5s5truOcetuorfednatnhoinsfitrlumcstu„raesdvtahluinesfialmresa,,lsaos ivnaalugerseeamreenatlswo iitnh aligtereraetmuerent[5w9]i.thWlhitielerathtuertehi[c5k9n].esWs hinilceretahseesthaincdkntheessavinecrraegaesseiszeanDdotfhme aagvneertaicgepasritziecleDs iosfremdaugcnedetitco pnaarntoiclleesveils, rthede uincteedrcthoanngaenocoluevpeliln, gthbeetiwnteeernchmanaggenectoicuppalirntigclbeestwwiellenocmcuargannedticfoprcaerstimcleasgnweitlilzaotcicounrs aonfdpafortriccelessminaganpeatrizaallteiol nlisneo.fTphairstricelseusltisnina tphaerarelldeul clitnioen. Tohf ims argesnuelttisc iannitshoetrroepdyuactniodnvaonf imshaignngetthice adneimsoatgronpeytizaantdionvaenfifsehcitn. gHtehneced,etmheaganveetriazgateiocnoeerfcfievcitt.yHHecncoef,tthheefialvmerdaegcerecaoseerdcivdiutye Htoc tohfattheenefirlgmy dloescsretahsaetdisdausesotcoiattehdatweintherhgyystleorsessitsh.aTt hise caosesorcciivaetefdorwceitvharhiyesstwereeasiksl.yTahned csoheorwcisveslifgohrcterevliaarniecse woneatkhleydaenpdosisthioonwrsateslirgahthterretlhiaanncoef othninthfielmddeeppoosistiitoionnrpaateramraethteerrs.tRhaelnatioofnsthhiinp offilcmoedrceipvoitsyitaionnd psaatruamraetitoenrsm. Raeglnaetitoiznasthioipn owfacsosetrucdivieitdy iannmd asgantuertaiztaiotinonmmagondeetliz[a60ti]ofnorwaassosfttumdiaetderiianlsm, aangdneatliszoatwioans

mproodpeols[e6d0]byfoAr labesnofettmala.,tearsiafolsll,oawnsdinalEsoquwaatisonpr(o2p) o[6s1e]d. by Alben et al., as follows in Equation (2)

[61].

MsA3

=

0.64

K1 4 D6 K14D6

(2)

MsA3 = 0.64 Hc

(2)

Hc

IItt iiss ccoonnffiirrmmeedd iinn XXPPSS rreessuullttss tthhaatt tthheerree iiss nnoo lloossss ccoommppoonneenntt iinn tthhiinn ffiillmm ssaammpplleess 11––33,, ssuuggggeessttiinngg that silver is pprreesseennttaassaassimimppleleddiliulutetennt toonnlyly[5[95]9.].FFigiguurere6b6bshsohwows tshtehheyhsytesrtesreissilsooloposposf of samples 4–6 deposited with varying power during sputtering having an increased Ag content of 10%. The resultant easy axis magnetizations (M) are 45.48 emu/g, 58.99 emu/g and 74.59 emu/g for
PropertiesPowerCompositionXpsTarget