Small-Scale Helicopter Automatic Autorotation

Preparing to load PDF file. please wait...

0 of 0
100%
Small-Scale Helicopter Automatic Autorotation

Transcript Of Small-Scale Helicopter Automatic Autorotation

Small-Scale Helicopter Automatic Autorotation
Modeling, Guidance, and Control

Small-Scale Helicopter Automatic Autorotation
Modeling, Guidance, and Control
Proefschrift
ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op vrijdag 18 september 2015 om 10:00 uur
door
Skander Taamallah
Master of Science in Aeronautics & Astronautics, Stanford University, U.S.A., Diplôme d’Ingénieur en Génie Electrique, I.N.S.A. Toulouse, France, geboren te Tunis, Tunesië.

Dit proefschrift is goedgekeurd door de
promotor: prof. dr. ir. P.M.J. Van den Hof promotor: prof. dr. ir. X. Bombois

Samenstelling promotiecommissie:

Rector Magnificus, Prof. dr. ir. P.M.J. Van den Hof Prof. dr. ir. X. Bombois

voorzitter Technische Universiteit Delft CNRS, Ecole Centrale de Lyon, Frankrijk

Onafhankelijke leden: Prof. dr. R. Babuska Prof. dr. J. Bokor Prof. dr. ir. M. Mulder Prof. dr. H. Nijmeijer Prof. dr. G. Scorletti

Technische Universiteit Delft Hungarian Academy of Sciences, Hongarije Technische Universiteit Delft Technische Universiteit Eindhoven Ecole Centrale de Lyon, Frankrijk

The research described in this thesis has been supported by the National Aerospace Laboratory (NLR), Amsterdam, The Netherlands.

Keywords:
Printed by: Front & Back:

Unmanned Aerial Vehicles, Small-Scale Helicopter, Automatic Autorotation, Trajectory Planning, Trajectory Tracking, Linear Parameter Varying Systems.
Ipskamp Drukkers.
View of a small-scale unmanned helicopter.

Copyright c 2015 by S. Taamallah
ISBN/EAN: 978-94-6259-831-7
An electronic version of this dissertation is available at http://repository.tudelft.nl/.

Considerate la vostra origine: non siete nati per vivere come bruti, ma per praticare la virtù e apprendere la conoscenza.
Dante Alighieri Divina Commedia, Inferno, Canto XXVI

Contents

Summary

xi

Samenvatting

xiii

Preface

xv

1 Introduction

1

1.1 Unmanned Aerial Vehicles (UAVs) . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Candidate applications . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Development and acquisition programs . . . . . . . . . . . . . . . 3

1.1.4 Airworthiness and safety aspects . . . . . . . . . . . . . . . . . . 4

1.2 The helicopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Helicopter mini-UAVs . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Helicopter main rotor hubs . . . . . . . . . . . . . . . . . . . . . 8

1.3 Helicopter autorotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Autorotation: a three-phases maneuver . . . . . . . . . . . . . . . 10

1.4 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Analysis of available options . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Model-free versus model-based options. . . . . . . . . . . . . . . 12

1.5.2 Integrated versus segregated options . . . . . . . . . . . . . . . . 13

1.5.3 Summary of previous analysis . . . . . . . . . . . . . . . . . . . 16

1.6 Research objectives and limitations . . . . . . . . . . . . . . . . . . . . . 17

1.7 Solution strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7.1 Modeling of the nonlinear helicopter dynamics . . . . . . . . . . . 19

1.7.2 The Trajectory Planning (TP) . . . . . . . . . . . . . . . . . . . . 21

1.7.3 The Trajectory Tracking (TT). . . . . . . . . . . . . . . . . . . . 24

1.8 Overview of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.8.1 Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 High-Order Modeling of the Helicopter Dynamics

47

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Helicopter modeling: general overview . . . . . . . . . . . . . . . . . . . 49

2.3 Model evaluation and validation . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Trim results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.2 Dynamic results . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii

viii

Contents

2.4 Preliminary analysis of the rigid-body dynamics . . . . . . . . . . . . . . 64 2.4.1 Linearizing the nonlinear helicopter model . . . . . . . . . . . . . 65 2.4.2 The engine ON case . . . . . . . . . . . . . . . . . . . . . . . . 69 2.4.3 The engine OFF case . . . . . . . . . . . . . . . . . . . . . . . . 70
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2.6 Appendix A: Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . 71 2.7 Appendix B: Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.8 Appendix C: Rigid-body equations of motion . . . . . . . . . . . . . . . . 76 2.9 Appendix D: Main rotor . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.10 Appendix E: Tail rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 2.11 Appendix F: Fuselage . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 2.12 Appendix G: Vertical and horizontal tails . . . . . . . . . . . . . . . . . . 98 2.13 Appendix H: Problem data . . . . . . . . . . . . . . . . . . . . . . . . . 99 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3 Off-line Trajectory Planning

107

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.2.1 Cost functional . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.2.2 Boundary conditions and trajectory constraints . . . . . . . . . . . 111

3.3 The optimal control problem . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4 Direct optimal control and discretization methods. . . . . . . . . . . . . . 113

3.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.5.1 The Height-Velocity (H-V) diagram . . . . . . . . . . . . . . . . 117

3.5.2 Evaluation of cost functionals. . . . . . . . . . . . . . . . . . . . 118

3.5.3 Optimal autorotations: effect of initial conditions . . . . . . . . . . 121

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4 On-line Trajectory Planning and Tracking: System Design

141

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.1.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2 General control architecture . . . . . . . . . . . . . . . . . . . . . . . . 144

4.3 Flatness-based Trajectory Planning (TP) . . . . . . . . . . . . . . . . . . 144

4.3.1 Flat outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.3.2 Flat output parametrization . . . . . . . . . . . . . . . . . . . . . 147

4.3.3 Optimal trajectory planning for the engine OFF case . . . . . . . . 147

4.4 Robust control based Trajectory Tracking (TT) . . . . . . . . . . . . . . . 151

4.4.1 Linear multivariable µ control design . . . . . . . . . . . . . . . . 153

4.4.2 Controller assessment metrics . . . . . . . . . . . . . . . . . . . 155

4.5 Design of the engine OFF inner-loop controller . . . . . . . . . . . . . . . 157

4.5.1 Choice of nominal plant model for the inner-loop control design . . 157

4.5.2 Selection of weights . . . . . . . . . . . . . . . . . . . . . . . . 158

4.5.3 Controller synthesis and analysis . . . . . . . . . . . . . . . . . . 159

Contents

ix

4.6 Design of the engine OFF outer-loop controller . . . . . . . . . . . . . . . 162 4.6.1 Selection of weights . . . . . . . . . . . . . . . . . . . . . . . . 162 4.6.2 Controller synthesis and analysis . . . . . . . . . . . . . . . . . . 163 4.6.3 Adapting the engine OFF outer-loop controller . . . . . . . . . . . 165
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.8 Appendix A: Optimal trajectory planning for the engine ON case . . . . . . 166 4.9 Appendix B: Design of the inner-loop controller for the engine ON case . . 167 4.10 Appendix C: Design of the outer-loop controller for the engine ON case . . 170 4.11 Appendix D: Maximum roll (or pitch) angle for safe (i.e. successful) land-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 4.12 Appendix E: Proof of Lemma 1. . . . . . . . . . . . . . . . . . . . . . . 176 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5 On-line Trajectory Planning and Tracking: Simulation Results

183

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.2 Setting up the trajectory planning for the engine ON cases . . . . . . . . . 184

5.3 Setting up the trajectory planning for the engine OFF cases . . . . . . . . . 187

5.4 Discussion of closed-loop simulation results for the engine ON cases . . . . 189

5.5 Discussion of closed-loop simulation results for the engine OFF cases . . . 192

5.5.1 System energy: the engine ON versus engine OFF cases . . . . . . 193

5.5.2 Closed-loop response with respect to sensors noise and wind dis-

turbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6 Affine LPV Modeling

217

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.3 Step 1: Identifying the central model (A0, B0) . . . . . . . . . . . . . . . . 227

6.4 Step 2: Identifying the basis functions {Ls, Rs}Ss=1 . . . . . . . . . . . . . . 227 6.5 Step 3: Identifying the basis functions {Tw, Zw}Ww=1 . . . . . . . . . . . . . 228

6.6

Step 4.1: Identifying the parameters

ηi

N i=1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

229

6.7 Step 4.2: Obtaining the mapping η(x(t), u(t)) . . . . . . . . . . . . . . . . 231

6.8

Steps 5.1 and 5.2: Identifying the parameters

ζi

N i=1

and

obtaining

the

map-

ping ζ(x(t), u(t)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

6.9 Application to the modeling and control of a modified pointmass pendulum . 232

6.9.1 Building the LPV models. . . . . . . . . . . . . . . . . . . . . . 233

6.9.2 Open-Loop analysis . . . . . . . . . . . . . . . . . . . . . . . . 235

6.9.3 Closed-Loop analysis. . . . . . . . . . . . . . . . . . . . . . . . 238

6.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

6.11 Appendix A: Kalman-Yakubovich-Popov (KYP) Lemma with spectral mask

constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

6.11.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

x

Contents

6.12 Appendix B: Identifying the set of parameters

η1(ti),

...,

ηS

(ti)

N i=1

for

a

specific

case

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

248

6.13 Appendix C: Problem data . . . . . . . . . . . . . . . . . . . . . . . . . 250

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

7 Conclusions and future research

261

7.1 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 262

7.2 Recommendations for future research. . . . . . . . . . . . . . . . . . . . 264

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

List of Abbreviations

281

Curriculum Vitæ

285

List of Publications

287
EngineTrajectory PlanningHelicopterControlAnalysis